1) Complete the sentences to match each grid.
a) There are \qquad squares shaded
out of \qquad .

There is \qquad row shaded out
of \qquad
The shaded area represents
$\frac{\square}{\square}$ or $\bar{\square}$

b) There are \qquad squares
shaded out of \qquad .
The shaded area represents $\frac{\square}{\square}$

2) Shade the grid and circle the answers that match the statement:
70 squares shaded is the same as:

$$
\begin{array}{ll}
\frac{70}{100} & \frac{7}{100}
\end{array}
$$

$$
\frac{70}{10}
$$

$$
\frac{7}{10}
$$

3) Complete the part-whole model.

4) Draw part-whole models to partition these fractions into tenths and hundredths.
a) 95 hundredths
b) 30 hundredths
5) Complete the sentences to match each grid.
a) There are \qquad squares shaded
out of \qquad .

There is \qquad row shaded out
of \qquad
The shaded area represents
$\bar{\square}$ or $\frac{\square}{\square}$

b) There are \qquad squares
shaded out of \qquad -.
The shaded area represents $\frac{\square}{\square}$

2) Shade the grid and circle the answers that match the statement:
70 squares shaded is the same as:

$\frac{7}{100}$
$\frac{70}{10}$
$\frac{7}{10}$
3) Complete the part-whole model.

4) Draw part-whole models to partition these fractions into tenths and hundredths.
a) 95 hundredths
b) 30 hundredths

1) Greg is explaining what this grid shows. Is he correct? Explain your answer.

There are two columns and one row shaded which represents $\frac{3}{10}$ or $\frac{30}{100}$

2) What is missing? Explain your reasoning.

3) Who has the most? Explain your answer. Can you use a diagram to explain?

twinkk.com

1) Greg is explaining what this grid shows. Is he correct? Explain your answer.

There are two columns and one row shaded which represents $\frac{3}{10}$ or $\frac{30}{100}$

2) What is missing? Explain your reasoning.

3) Who has the most? Explain your answer. Can you use a diagram to explain?

1) Find 10 ways you can to partition twenty-three hundredths using part-whole models like this one.

2) Read each child's statement and write in the correct fraction that matches.

$\frac{54}{100}$		$\frac{57}{100}$
	$\frac{59}{100}$	
		$\frac{55}{100}$

1) Find 10 ways you can to partition twenty-three hundredths using part-whole models like this one.

2) Read each child's statement and write in the correct fraction that matches.

